Articolo
STOCCAGGIO DELL'IDROGENO IN IDRURO METALLICO
Perché lo stoccaggio dell'idrogeno in idruro metallico é importante.
I camion, gli autobus o le auto alimentati a idrogeno sono molto simili alle comuni automobili "elettriche" a batteria che si vedono sempre più spesso ogni giorno. Anche i veicoli a idrogeno sono veicoli elettrici, ma il sistema di alimentazione è in parte diverso: l'idrogeno e l'ossigeno reagiscono all'interno di una cella a combustibile generando l'elettricità che anima un motore elettrico. Mentre i veicoli a batteria traggono energia da batterie agli ioni di litio precaricate, i veicoli alimentati a idrogeno immagazzinano il carburante a bordo, all'interno di serbatoi pressurizzati.
Per una massima densità energetica, l'idrogeno immagazzinato deve essere sottoposto a pressioni fino a 700 bar per poter essere contenuto nello spazio limitato del serbatoio e garantire un'autonomia adeguata. Questi serbatoi devono essere sufficientemente resistenti per sopportare l'alta pressione e devono anche essere impermeabili all'idrogeno per evitare che il gas fuoriesca. Tuttavia, si stanno cercando delle alternative ai serbatoi al fine di evitare problemi di sicurezza legati alla pressione estrema e prevenire sprechi di energia quando si comprime l'idrogeno a simili pressioni.
Il DLR, l'agenzia aerospaziale tedesca di Stoccarda, si occupa di studiare metodi alternativi per immagazzinare l'idrogeno da utilizzare nelle celle a combustibile o nei veicoli. Per lo stoccaggio di idrogeno in serbatoi di idruro metallico, è stato richiesto a Wagner Mess- und Regeltechnik, distributore Bronkhorst, di individuare una soluzione per l'immissione controllata di idrogeno gassoso all'interno del serbatoio, e di misurare l'idrogeno gassoso rilasciato dal contenitore.
Requisiti per l'applicazione
Nei serbatoi di idruro metallico, l'idrogeno viene immagazzinato grazie alle reazioni chimiche reversibili che avvengono tra una lega metallica e l'idrogeno gassoso. L'idruro metallico solido agisce come una spugna in grado di assorbire e rilasciare idrogeno. Per individuare in quali condizioni di processo il carico/scarico di idrogeno risulti più efficace, è necessario misurare e controllare accuratamente i flussi di idrogeno e la pressione di processo. Inoltre, trattandosi di ambienti di ricerca e sviluppo, i setpoint e i valori di misurazione devono essere accuratamente registrati per fini analitici.
Punti fondamentali
- Controllo del flusso-pressione
- Riproducibilità
- Metodo sicuro per conservare l'idrogeno
- Applicazione a pressione relativamente bassa rispetto al sistema di stoccaggio tradizionale
Soluzione di processo
La soluzione Bronkhorst consiste in una serie di strumenti di misurazione della portata installati all'ingresso e all'uscita del serbatoi di idruro metallico. Per l'immissione dell'idrogeno nell'idruro metallico, vengono utilizzati gli strumenti della famiglia di misuratori di portata IN-FLOW in combinazione con le valvole Vary-P. Per studiare la reazione di stoccaggio, la pressione all'interno del serbatoio di idruro metallico viene mantenuta a un determinato livello.
A tal fine, all'ingresso e all'uscita del serbatoio di idruro metallico, sono presenti regolatori di pressione della serie IN-PRESS, collegati a valvole Vary-P. La valvola parallela all'uscita è una valvola a sfera che permette di ridurre la pressione a quella atmosferica.
I camion, gli autobus o le auto alimentati a idrogeno sono molto simili alle comuni automobili "elettriche" a batteria che si vedono sempre più spesso ogni giorno. Anche i veicoli a idrogeno sono veicoli elettrici, ma il sistema di alimentazione è in parte diverso: l'idrogeno e l'ossigeno reagiscono all'interno di una cella a combustibile generando l'elettricità che anima un motore elettrico. Mentre i veicoli a batteria traggono energia da batterie agli ioni di litio precaricate, i veicoli alimentati a idrogeno immagazzinano il carburante a bordo, all'interno di serbatoi pressurizzati.
Per una massima densità energetica, l'idrogeno immagazzinato deve essere sottoposto a pressioni fino a 700 bar per poter essere contenuto nello spazio limitato del serbatoio e garantire un'autonomia adeguata. Questi serbatoi devono essere sufficientemente resistenti per sopportare l'alta pressione e devono anche essere impermeabili all'idrogeno per evitare che il gas fuoriesca. Tuttavia, si stanno cercando delle alternative ai serbatoi al fine di evitare problemi di sicurezza legati alla pressione estrema e prevenire sprechi di energia quando si comprime l'idrogeno a simili pressioni.
Il DLR, l'agenzia aerospaziale tedesca di Stoccarda, si occupa di studiare metodi alternativi per immagazzinare l'idrogeno da utilizzare nelle celle a combustibile o nei veicoli. Per lo stoccaggio di idrogeno in serbatoi di idruro metallico, è stato richiesto a Wagner Mess- und Regeltechnik, distributore Bronkhorst, di individuare una soluzione per l'immissione controllata di idrogeno gassoso all'interno del serbatoio, e di misurare l'idrogeno gassoso rilasciato dal contenitore.
Requisiti per l'applicazione
Nei serbatoi di idruro metallico, l'idrogeno viene immagazzinato grazie alle reazioni chimiche reversibili che avvengono tra una lega metallica e l'idrogeno gassoso. L'idruro metallico solido agisce come una spugna in grado di assorbire e rilasciare idrogeno. Per individuare in quali condizioni di processo il carico/scarico di idrogeno risulti più efficace, è necessario misurare e controllare accuratamente i flussi di idrogeno e la pressione di processo. Inoltre, trattandosi di ambienti di ricerca e sviluppo, i setpoint e i valori di misurazione devono essere accuratamente registrati per fini analitici.
Punti fondamentali
- Controllo del flusso-pressione
- Riproducibilità
- Metodo sicuro per conservare l'idrogeno
- Applicazione a pressione relativamente bassa rispetto al sistema di stoccaggio tradizionale
Soluzione di processo
La soluzione Bronkhorst consiste in una serie di strumenti di misurazione della portata installati all'ingresso e all'uscita del serbatoi di idruro metallico. Per l'immissione dell'idrogeno nell'idruro metallico, vengono utilizzati gli strumenti della famiglia di misuratori di portata IN-FLOW in combinazione con le valvole Vary-P. Per studiare la reazione di stoccaggio, la pressione all'interno del serbatoio di idruro metallico viene mantenuta a un determinato livello.
A tal fine, all'ingresso e all'uscita del serbatoio di idruro metallico, sono presenti regolatori di pressione della serie IN-PRESS, collegati a valvole Vary-P. La valvola parallela all'uscita è una valvola a sfera che permette di ridurre la pressione a quella atmosferica.
Paolo Ferrario - Precision Fluid Controls
Guarda tutti i contenuti Precision Fluid Controls sul sito Fiera Idrogeno News
Guarda tutti i contenuti Precision Fluid Controls sul sito Fiera Idrogeno News
Articoli tecnico scientifici o articoli contenenti case history
https://www.precisionfluidonline.it/2021/06/stoccaggio-dellidrogeno-in-idruro-metallico/
Richiedi informazioni a Precision Fluid Controls
Ultimi articoli e atti di convegno
Upgrading di biometano nell'impianto di trattamento della frazione organica dei rifiuti urbani ad Arezzo
La nuova linea di digestione anaerobica
L'impianto di upgrading
Il ruolo del biometano nella transizione energetica: Benefici ambientali ed...
Idrogeno: prospettive e sviluppi
Agli inizi degli anni 2000 l'economista e sociologo statunitense Jeremy Rifkin ha iniziato una campagna di conferenze e presentazioni su un'economia...
La direttiva sull'efficienza energetica ascolta il CTI
La recente pubblicazione di vari atti delegati della Commissione Europea finalizzati a fornire elementi utili per l'attuazione della Direttiva UE...
Rilascio di biocombustibile liquido da pompa di trasferimento. Un caso studio relativo alla classificazione della zona Atex
Il bioetanolo, ricavato dalle biomasse, è un biocombustibile liquido, che può essere miscelato con la benzina e usato in parecchi settori, come il...
Il nucleare nel novembre 2024 in uno scenario elettrico globale con una quota crescente di eolico e solare
Nell'ambito dell'attuale transizione energetica, in molti paesi ed istituzioni
(ad esempio alla COP 28 e nella Commissione Europea) è evidente un...
L'era dell'automazione edilizia
In un'epoca dominata dagli oggetti intelligenti - smartphone, automobili, orologi e altro - è emerso un nuovo tipo di progresso tecnologico:...
COP 29 Le carte in regola dell'Europa
Dall'11 di questo mese sino al 22 è programmato lo svolgimento della 29° Conferenza delle Parti firmatarie della Convenzione ONU sul Cambiamento...
WEO 2024: accelerare la transizione energetica per traguardare la sostenibilità
Puntualmente, ogni anno, a poche settimane dall'inizio del summit mondiale sul clima, COP 29, a Baku in Azerbaijan dall'11 al 22 novembre,...
Transizione energetica e aree idonee: il caso emblematico della Sardegna
In questi mesi, le Regioni stanno lavorando sui disegni di legge relativi alla individuazione delle superfici e delle aree idonee per l'installazione...
Texaco HDAX 9300 SAE 40, lubrificante per motori a gas: approvazione da parte di MWM TCG e Caterpillar CG
H.G.S. GmbH, una delle principali aziende tedesche nella costruzione, manutenzione, riparazione e gestione tecnica di impianti di cogenerazione e...
Sicurezza e transizione ecologica per l'Oil&Gas e l'industria di processo
Il tema della transizione ecologica, ovvero dello sviluppo sostenibile e connesso alla decarbonizzazione, permea la società
e impone obiettivi...